À¯´Ï½ºÅ͵ð ¼ÒÅëä³Î
ÆäÀ̽ººÏ
À¯Æ©ºê
ÀνºÅ¸±×·¥
ºí·Î±×
Ä«Ä«¿ÀÅåä³Î
½Å±Ô
ÀÔ¼º
BESTNEW
[¿¡¼¾¼È ¹°¸®] °íÀü¿ªÇÐ(ÀϹݿªÇÐ) ¼­¿ï´ë ¹Ú»ç Ãâ½ÅÀÌ ¾Ë·ÁÁÖ´Â °íÀü¿ªÇÐÀÇ ¸ðµç °Í
±³¼ö´Ô¹Ú»ó½Å °ú¸ñ°íÀü¿ªÇÐ ÇнÀ´Ü°è±âº»ÀÌ·Ð
°­ÀǼö38°­ ¼ö°­±â°£90ÀÏ »óÅ¿ϰ­
±³Àç »ùÇÿµ»ó °íÈ­Áú
ÃÑ ÁÖ¹®±Ý¾×
°­ÁÂ 0¿ø
±³Àç 0¿ø
ÇÒÀÎ 0¿ø
ÇÕ°è 0¿ø

°­Á¼Ұ³

HOT KEY ¼­¿ï´ë ¹Ú»ç Ãâ½ÅÀÌ ¾Ë·ÁÁÖ´Â °íÀü¿ªÇÐÀÇ ¸ðµç °Í
°­Á¹üÀ§ 1 Çà·Ä°ú º¤ÅÍ, º¤ÅÍ °è»ê(Matices, vectors, and vector calculus)
2 ´ºÅÏ ¿ªÇÐ(Newtonian Mechanics – Single particle)
3 Áøµ¿(Oscillations)
4 ºñ¼±Çü Áøµ¿°ú È¥µ·(Nonlinear oscillations and chaos)
5 ¸¸À¯ÀηÂ(Gravitation)
6 º¯ºÐ¹ýÀÇ ¸î °¡Áö ¹æ¹ý(Calculus of variations)
7 ÇعÐÅÏÀÇ ¿ø¸®(¶ó±×¶ûÁÖ ¿ªÇаú ÇعÐÅÏ ¿ªÇÐ) (Hamilton¡¯s Principle – Lagrangian and Hamiltonian Dynamics)
8 Á߽ɷ¿¡ ÀÇÇÑ ¿îµ¿(Central Force Motion)
9 ÀÔÀÚ°èÀÇ µ¿¿ªÇÐ(Dynamics of a System of Particles)
10 ºñ°ü¼º°è¿¡¼­ÀÇ ¿îµ¿(Motion in a Noninertial Reference Frame)
11 °­Ã¼ÀÇ ¿ªÇÐ(Dynamics of Rigid Bodies)
12 ¿¬¼ºÁøµ¿(Coupled Oscillations)
13 ¿¬¼Ó°è: Æĵ¿(Continuous Systems: waves)
14 Ư¼ö »ó´ë¼º ÀÌ·Ð(Special Theory of Relativity)
°­ÁÂƯ¡ ¼­¿ï´ë ¹Ú»ç°¡ ¾Ë·ÁÁÖ´Â Â÷¿øÀÌ ´Ù¸¥ ¹°¸®Àü°ø
[¿¡¼¾¼È ¹°¸®] °íÀü¿ªÇÐ(ÀϹݿªÇÐ)

[°­ÁÂƯ¡]
1) ´Ü 38°­À¸·Î ³¡³»´Â ü°èÀûÀÎ Ä¿¸®Å§·³
- °íÀü¿ªÇÐ Àü°øÇнÀ Àü ¹°¸®ÇÐ ¹è°æÁö½ÄºÎÅÍ ÃʽºÇǵå·Î Á¤¸®
- ±âº»±âºÎÅÍ °íÀü¿ªÇÐ ÇÙ½É ´ºÅÏ¿ªÇÐ, ¶ó±×¶ûÁÖ¿ªÇÐ, ÇعÐÅÏ ¿ªÇÐ µîÀ» ¿ø¸®ºÎÅÍ Á¦´ë·Î ÇнÀ

2) ±ò²ûÇÑ °³³äÁ¤¸®·Î ½±°Ô ÀÌÇØÇÏ´Â °íÀü¿ªÇÐ ÇÙ½ÉÀÌ·Ð
- ¿Ü¿ì±â¸¸ ÇÏ´Â ¹°¸® °ø½ÄÀº ´õ ÀÌ»ó NO!
- °ø½ÄÀÇ °úÁ¤°ú ¿ø¸®¸¦ ²Ä²ÄÇÏ°Ô Á¦½ÃÇÏ¿© Ä£ÀýÇÏ°Ô Â÷±ÙÂ÷±Ù ¼³¸í

3) ½ÇÀü¿Ï¼ºÀ» À§ÇÑ ¿¹Á¦¹®Á¦ Ç®ÀÌ
- źźÇÏ°Ô ½Ç·ÂÀ» Çâ»óÇϱâ À§ÇÑ ¸¶Áö¸· °ü¹®
- °¢ ÆÄÆ®º° °íÀü¿ªÇÐ ¿¹Á¦ ¹®Á¦ Ç®À̸¦ ÅëÇØ °³³ä ÀÀ¿ë ¹æ¹ý Á¦½Ã

[¹Ú»ó½Å ±³¼ö´ÔÀº?]
¡¤ À¯´Ï½ºÅ͵ð ÀÚ¿¬°è¿­ ¹°¸®Àü°ø ´ëÇ¥°­»ç
¡¤ University of St Andrews(½ºÄÚƲ·£µå, UK) ¹Ú»ç ÈÄ ¿¬±¸¿ø
¡¤ ¼­¿ï´ëÇб³ ¹°¸®Çаú ¹Ú»ç Á¹¾÷
¡¤ ¼º±Õ°ü´ëÇб³ ¹°¸®Çаú Çлç Á¹¾÷
¡¤ Àü) ÀܵðÇпø
¡¤ Àü) ƯÀÚ´ÜÇпø °­»ç
¡¤ Àü) ´Ù¿øÇпø °­»ç
¡¤ Àü) ÇöóÁÇпø °­»ç

¢Ã Teacher Said
¾È³çÇϼ¼¿ä. ¹Ú»ó½ÅÀÔ´Ï´Ù.
¹°¸®ÇÐ Àü°øÀ» ½ÃÀÛÇÏ´Â ¸¹Àº ÈĹèµéÀÌ <°íÀü¿ªÇÐ>À» ¾î·Á¿öÇÏ°í ÀÖ½À´Ï´Ù.
ƯÈ÷ °íÀü¿ªÇÐÀº ÀÌÈÄ¿¡ ¹è¿ì°Ô µÉ <¾çÀÚ¿ªÇÐ>°úµµ ¿¬°áÀÌ µÇ±â¿¡ °³³äÀ» źźÇÏ°Ô ½×¾Æ¾ß ÇÕ´Ï´Ù.
ÀÌ °­ÀǸ¦ ÅëÇؼ­ ´Ü¼øÈ÷ °íÀü¿ªÇи¸ÀÌ ¾Æ´Ï¶ó,
¾ÕÀ¸·Î ¹°¸®ÇÐ Àü°øÀ» ¾î¶»°Ô °øºÎÇÒÁö ±â¹ÝÀ» Àâ°í ´ÙÁö´Â µ¥ µµ¿òÀÌ µÇ¾úÀ¸¸é ÁÁ°Ú½À´Ï´Ù.

[±³Àç ¾È³»]
¡¤ ±³Àç¸í : Classical Dynamics of particles and systems (5th)
¡¤ ÀúÀÚ : S.T.Thornton, J.B.Marion
¡¤ ÃâÆÇ»ç : Cengage Learning, Inc
¡¤ MarionÀÌ ÁÖ±³ÀçÀ̸ç ȤÀº Fowles ±³À縦 äÅÃÇÏ°í ÀÖ½À´Ï´Ù. ÇÙ½É °³³äÀº µ¿ÀÏÇϹǷΠº»ÀÎÀÇ ¼ö°­ Ç÷£¿¡ ¸ÂÃç¼­ ÁغñÇÏ½Ã±æ ¹Ù¶ø´Ï´Ù.
¼ö°­´ë»ó ¢Ã ¹°¸®Çаú ¹× °ü·Ã Àü°øÀÇ Çлý
¢Ã °íÀü¿ªÇÐ ¼ö¾÷À» µû¶ó°¡±â Èûµç Çлý
¢Ã °íÀü¿ªÇп¡ ´ëÇÑ ¿¹½ÀÀÌ ÇÊ¿äÇϰųª ±âÃÊ ³»¿ë º¹½ÀÀÌ ÇÊ¿äÇÑ Çлý
¢Ã ´ëÇб³ 1Çг⠼öÁØÀÇ ÀϹݹ°¸®ÇÐ ¹× ¹ÌÀûºÐÇÐÀ» ¹è¿î »óÅ¿¡¼­ °íÀü¿ªÇÐÀ» óÀ½ Á¢ÇÏ´Â Çлý

±³ÀçÁ¤º¸

ÇØ´ç ±³Àç´Â ½ÃÁß ¼­Á¡¿¡¼­ ±¸¸Å °¡´ÉÇÕ´Ï´Ù. Classical Dynamics of particles and systems ÀúÀÚ Marion ÃâÆÇ»ç Cengage Learning, In
¡¤°íÀü¿ªÇÐÀÇ °¡Àå Ç¥ÁØÀûÀÎ ±³°ú¼­
¡¤ÀÌ·Ð °³³äÀ» ¼öÇÐÀûÀ¸·Î Àü°³ÇÏ¿© ÀÌÇØ°¡ ½¬¿ò
¡¤¹°¸®¹ýÄ¢ÀÇ ¼öÇÐÀû ±¸Á¶¸¦ ÇнÀÀÚ°¡ ÀÍÈ÷µµ·Ï À¯µµ

¼ö°­Èıâ

Á¦¸ñ³»¿ëÀÛ¼ºÀÚ
´ÊÀº ¿ªÇÐ °øºÎ Çкζ§ Àü°øÀ» ±×³É ½ÃÇè¿ëÀ¸·Î ¹Ù¦ ¿Ü¿ì°í ½ÃÇè ³¡³ª¸é ´Ù Àؾî¹ö·È¾ú´Âµ¥ ´ëÇпø ÁøÇÐÇÏ°í ½Í¾îÁ®¼­ ´Ê°Ô³ª¸¶ ´Ù½Ã °øºÎÇÏ°í ÀÖ½À´Ï´Ù. ±³¼ö´ÔÀÌ ³ª±ß³ª±ß Ä£ÀýÇÏ°Ô ¾Ë·ÁÁּż­ ÁÁ½À´Ï´Ù ¼Û**
BEST°ÆÁ¤ÀÌ ½Ï ³¯¾Æ°¡´Â °­ÀÇ¿´¾î¿ä ¾Æ¹«·¡µµ Áøµµ³ª ÇлýµéÀÇ ¼öÁØ¿¡ ¸ÂÃç¾ß ÇÏ´Â ´ëÇÐ ±³¼ö´ÔµéÀÇ °­ÀÇ´Â ÇÑ°è°¡ ÀÖ¾ú´Âµ¥, ÀÌ °­ÀǸ¦ ¼ö°­ÇÔÀ¸·Î ÀÎÇØ Á¤¸» µµ¿òÀÌ ¸¹ÀÌ µÇ¾ú½À´Ï´Ù. °¨»çÇÕ´Ï´Ù! Á¶**
BESTÁ¤¸» µµ¿òÀÌ µË´Ï´Ù °­ÀÇ ¿­½ÉÈ÷ µè°í ÀÌÇØÇÏ·Á ³ë·ÂÁßÀÔ´Ï´Ù. ¾çÀÚ¿ªÇÐ2 Á¤º¸°¡ ³Ê¹«¾ø´Âµ¥ ÀÌ·¸°Ô ¾÷·ÎµåÇØÁּż­ °¨»çÇÕ´Ï´Ù ¾È**
BEST´öºÐ¿¡ ¾çÀÚ¿ªÇÐ °øºÎÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù!!!! ´ëÇп¡¼­ ¹è¿ì´Â ¾çÀÚ¿ªÇÐ ³Ê¹« ¾î·Á¿ö¼­ °øºÎÇϱ⠸·¸·Çߴµ¥, ¹Ú»ó½Å¼±»ý´Ô ´öºÐ¿¡ ¾çÀÚ¿ªÇÐ ÀÌÇØÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. °ú¸ñ ÀÚü°¡ ³Ê¹« ¾î·Á¿ö¼­ ¾î¶»°Ô °øºÎ¸¦ ÇؾßÇÒÁöµµ ¸ô¶ú´Âµ¥, °­ÀÇ µéÀ¸¸é¼­ Á¤¸®ÇÏ´Ùº¸´Ï .. ÇÑ**
ÀÌÇØÇϱ⠽¬¿ì¸é¼­µµ ÇкΠ°³³ä±îÁö Ä¿¹ö °¡´ÉÇÑ °­ÀÇ... ´Ù¸¸ ¸¹Àº ÆǼ­ ¿ÀŸ¿Í ºÎÁ·ÇÑ ¿¬½À¹®Á¦ Ç®ÀÌ·Î ÀÎÇØ °³³äÄ¿¹ö´Â °¡´ÉÇѵ¥ ½ÃÇè´ëºñ±îÁö´Â »ì¦ ºÎÁ·ÇÕ´Ï´Ù. ½¬¿î°Í¿¡¸¸ ÃÊÁ¡À» µÎ¾î ÇÊ¿äÇÑ ³»¿ëÀ» ¼³¸íÇÏÁö ¾Ê´Â °Íµéµµ ¸¹Àºµ¥ ÇкΠÀü°ø ¼öÁØ¿¡ ¸Â°Ô ÀÌÇØÇϱ⠽±°Ô Àß °¡¸£Ä¡½Ê´Ï´Ù. ´ÜÁ¡À¸·Î´Â ÆǼ­ ¿ÀŸ°¡ ³Ê¹« ¸¹´Ù´ÂÁ¡, À̸¦ ÀÚ¸·À¸·Î¶óµµ °øÁöÇØÁÖ¸é ÁÁÀºµ¥ ÆǼ­ ´Ù.. Àü**

°­ÀǸñÂ÷

No°­ÀÇ¸í°­ÀÇ¿µ»ó°­Àǽð£Ã·ºÎÆÄÀÏ
0°­ OT °íÈ­Áú 25ºÐ ÷ºÎÆÄÀÏ
1°­ [1-1] Review of General Physics °íÈ­Áú 69ºÐ
2°­ [1-2] Vector and Transformation 40ºÐ ÷ºÎÆÄÀÏ
3°­ [1-3] Vector Algebra 62ºÐ ÷ºÎÆÄÀÏ
4°­ [1-4] Vector Calculus 1 °íÈ­Áú 66ºÐ ÷ºÎÆÄÀÏ
5°­ [1-4] Vector Calculus 2 26ºÐ
6°­ [1] 1´Ü¿ø ¿¹Á¦Ç®ÀÌ(Fowles, Marion) 56ºÐ ÷ºÎÆÄÀÏ
7°­ [2] Newton Mechanics 69ºÐ ÷ºÎÆÄÀÏ
8°­ [2] 2´Ü¿ø ¿¹Á¦Ç®ÀÌ(Fowles) 40ºÐ ÷ºÎÆÄÀÏ
9°­ [2] 2´Ü¿ø ¿¹Á¦Ç®ÀÌ(Marion) 68ºÐ
10°­ [3-1] Introduction to Oscillation and Solving ODE 77ºÐ ÷ºÎÆÄÀÏ
11°­ [3-2] 2D Harmonic Oscillation, Phase Space 48ºÐ ÷ºÎÆÄÀÏ
12°­ [3-3] Damped and Force Oscillation 45ºÐ ÷ºÎÆÄÀÏ
13°­ [3] Resonance, 3´Ü¿ø ¿¹Á¦Ç®ÀÌ(Marion) 48ºÐ ÷ºÎÆÄÀÏ
14°­ [3] Q-Factor, 3´Ü¿ø ¿¹Á¦Ç®ÀÌ(Fowles) 70ºÐ
15°­ [3-4] Fourier Series, Impulse and Green's Function 88ºÐ ÷ºÎÆÄÀÏ
16°­ [4] Nonlinear Dynamics and Chaos 1 86ºÐ ÷ºÎÆÄÀÏ
17°­ [4] Nonlinear Dynamics and Chaos 2 41ºÐ
18°­ [5] Gravitation 66ºÐ ÷ºÎÆÄÀÏ
19°­ [5] Tidal Force 58ºÐ
20°­ [6] Calculus of Variation 94ºÐ ÷ºÎÆÄÀÏ
21°­ [7] Hamilton's Principle, Lagrange's equation 83ºÐ ÷ºÎÆÄÀÏ
22°­ [8] Properties of Lagrangian Dynamics 51ºÐ ÷ºÎÆÄÀÏ
23°­ [8] Symmetry,Hamiltonin Dynamics, Optional 83ºÐ
24°­ [8] Symmetry,Hamiltonin Dynamics, Liouville's Theorem, Virial Theorem 46ºÐ
25°­ [8] Planetary Motion 59ºÐ
26°­ [8] Pecession, Stability 35ºÐ
27°­ [9] System of particles 101ºÐ ÷ºÎÆÄÀÏ
28°­ [9] Collisions 47ºÐ
29°­ [10] Scattering Cross section, Rocket Motion 60ºÐ ÷ºÎÆÄÀÏ
30°­ [10] Pecession, Stability 76ºÐ
31°­ [11] Inertia Tensor 65ºÐ ÷ºÎÆÄÀÏ
32°­ [11] Properties of Inertia Tensor and Euler Angle 106ºÐ
33°­ [12] Coupled Oscillators 71ºÐ ÷ºÎÆÄÀÏ
34°­ [12] Normal Modes 87ºÐ
35°­ [13] Waves 49ºÐ ÷ºÎÆÄÀÏ
36°­ [13] Waves, Phase and Group velocity 49ºÐ
37°­ [14] Special Relativity 1 54ºÐ ÷ºÎÆÄÀÏ
38°­ [14] Special Relativity 2 73ºÐ